Building pipeline-based NLP systems for your applications

Hua Xu

School of Biomedical Informatics, University of Texas Health Science Center at Houston

Disclosure

- I receive grant funding from:
 - NIH: NLM, NIGMS, NCI
 - CPRIT (Cancer Prevention and Research Institute of Texas)
- I have been a consultant for:
 - Hebta LLC

What Is NLP?

- Broad Definition any system that manipulates text or speech. It could involve various degrees of linguistic knowledge.
- NLP Systems
 - Natural Language understanding
 - Natural Language extraction
 - Natural Language generation
 - Machine translation
 - NLP-based information retrieval
 - <u>NLP-interfaces</u>

Study of Natural Language

- Human language (vs. formal and computer language)
- Linguistics a description of language used by theoretical linguists.
- Psycholinguistics a cognitive model of how people understand and generate language.
- Computational linguistics build computational models to understand and generate language.

Computational Linguistics

- An interdisciplinary field dealing with the statistical and/or rule-based modeling of natural language from a computational perspective
 - Driven by need to process natural language convert to structured form for further computerized processes
 - Computational model is not necessarily same as human model - we don't understand much about human language facility

Overview of Linguistic Levels

- **Phonology**: units of sound combine to produce words (will not cover)
- Morphology: basic units combine to produce words
- Lexicography: syntactic (part of speech) and semantic categories of words
- Syntax: structures combine to produce sentences
- Semantics: meaning/interpretations
- Discourse previous information affects the interpretation of the current information
- Pragmatic: context or world knowledge affects the interpretation of meaning

Morphology

- Definition: The study of how words are composed from smaller, meaning-bearing units (morphemes)
 - Inflection: Word stem + grammatical morpheme
 like → likes, liked, liking
 - Derivation: Word stem + syntactic/grammatical morpheme
 - \circ generalize \rightarrow generalization
 - Compounding: Two base forms join to form a new word
 bedtime
- Application: spelling check, stemming, POS tagging, speech recognition

Lexicography - Words

- Recognize word Tokenization (determine the word boundary)
- Identify word Lookup (map to dictionary entry)
- Categorize word Tagging
 - Syntactic Assign Part-of-Speech Tags
 - Semantic Assign semantic categories

Syntax - Sentences

- Definition: study of the structure of a sentence.
 - Categories combine with others to produce a well-formed structure with underlying relations
- Difficulties: ambiguous, nesting, omitted structures
 - pain in (hands and feet) vs. (pain in hands) and fever
- Parsing determining syntax
 - Formalisms: regular expressions vs. context-free grammar
 - Partial vs. full parsing

Semantics

- Lexical level to determine the meaning of a word
 - Semantic categories of a word
 - Abdomen body location
 - *Fever* symptom
 - *pt* labtest (prothrombin time assay) vs. treatment (physical therapy)

Word sense disambiguation

 Grammatical level - word senses in a structure combine to form a meaning of the whole structure

Discourse

- Previous information in text affects current text
 - Correct reference for pronouns, definite noun phrases, bridging noun phrases.
 - Mass noted in left upper lobe. It was wellmarginated.
 - Time of events
 - Determining topic
 - Coherence of text

Pragmatics

Context affect meaning

- Domain: A mass was observed
- Section of Report: past history vs. hospital course
- Prior information
- World knowledge affects interpretation
 - He couldn't do any trading on the past Monday. (Market was closed on President Day - Monday.)

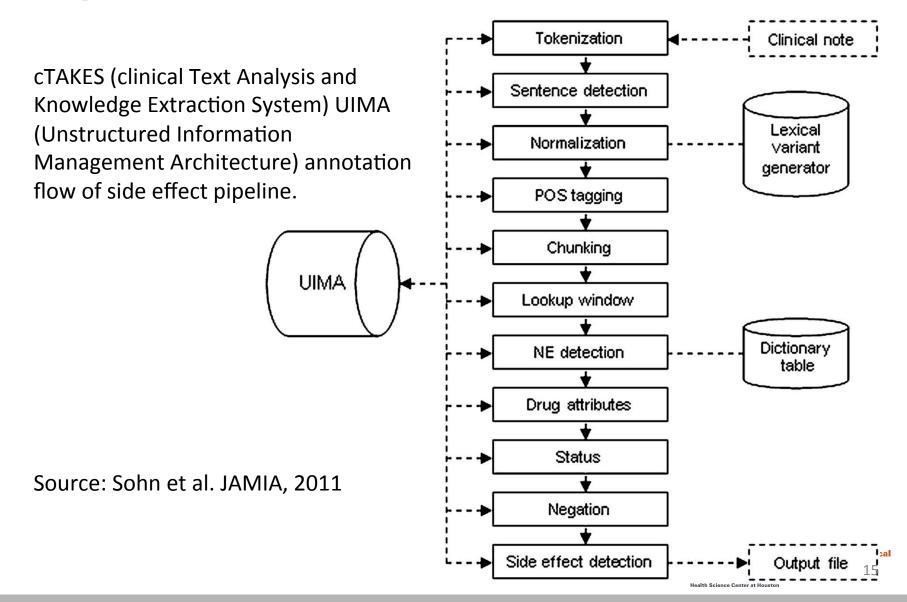
It's all about Ambiguity!

- POS tagging saw (noun vs. verb)
- Semantic tagging pt (patient, physical therapy, prothrombin time assay)
- Syntactic parsing The patient had pain in lower extremities. vs.

The patient had pain in emergency room.

Most of current clinical NLP systems are information extraction systems

- General-purpose
 - MedLEE
 - MetaMap
 - cTAKES


. . . .

.

- KnowledgeMap Concept Identifier
- Specific-purpose
 - MIST the MITRE identification scrubber toolkit
 - MedEx medication information extraction

Pipeline-based architecture

Demo of building clinical NLP pipelines using CLAMP

- Clinical Language Annotation, Modeling, and Processing Toolkit (CLAMP)
- Demo 1 determine smoking status using rule-based approaches
- Demo 2 extract lab names using a hybrid approach that combines machine learning and rules

Introduction to CLAMP

A general purpose clinical NLP system built on proven methods

NLP Tasks		Ranking
Named entity recognition	2009 i2b2, medication	#2
	2010 i2b2 problem, treatment, test	#2
	2013 SHARe/CLEF abbreviation	#1
UMLS encoding	2014 SemEval, disorder	#1
Relation extraction	2012 i2b2 Temporal	#1
	2015 SemEval Disease-modifier	#1
	2015 BioCREATIVE Chemical-induced disease	#1

- An IDE (integrated development environment) for building customized clinical NLP pipelines via GUIs
 - Annotating/analyzing clinical text
 - Training of ML-based modules
 - Specifying rule

What does CLAMP address?

- The Transportability Problem of NLP
 - From one type of clinical notes to another
 - From one institute to another
 - From one application to another
- Need a solution for non-NLP experts to efficiently build high-performance NLP modules for individual applications!

CLAMP Demo 1

- Build a rule-based system to extract smoking status from clinical text
- Input: sentences containing patient smoking information
- Output: three types of status for each smoking mention:
 - Current Smoker: She has a prior history of smoking although not currently
 - Past Smoker: She is continuing to smoke
 - Non-Smoker: She denies any tobacco use , alcohol use

CLAMP Demo 2

- Build a hybrid (machine learning + rules) system for extracting lab test concepts from clinical text
- Input: discharge summaries
- Output: lab test concepts mentioned in the text with attributes of:
 - Offsets
 - Negation
 - UMLS CUIs

CLAMP Availability

- CLAMP is available in two versions:
 - CLAMP CMD (free)
 - CLAMP GUI (depends on the license)

https://sbmi.uth.edu/ccb/resources/clamp.htm

- It is not an open source software, but source codes are available for collaborators with appropriate licenses.
- We are looking for collaborators to co-develop the system! If interested, please contact: <u>Hua.Xu@uth.tmc.edu</u>

Thank you!

Questions?

hua.xu@uth.tmc.edu

