What fascinates us...

                                                  1. Water homeostasis and cell volume maintenance & regulation

Image 01.JPG We are like little bags of sea water walking the surface of the earth...

                                                  As a terrestrial species, we carry water away from streams, rivers, ponds, and seas. As water flows through our bodies,

                                                  we maintain a condition of steady-state. We constantly intake water through drinks and food and loose water through

                                                  respiration, sweat, urine, and feces. The volume of water we circulate in our heart, arteries and veins define our blood

                                                  pressure. The amount of water in cells (which define cell volume) is also maintained constant and regulated when

                                                  disrupted. This is essential for the proper architecture and function of tissues and organs.The laboratory studies the

                                                  mechanisms of water homeostasis. 

 

                                                  2. Chloride homeostasis in central and peripheral neurons

                                                  GABAergic and glycinergic synaptic transmission depends upon the Cl- gradient that exists across the neuronal

                                                  membrane. The neuronal Cl- concentration is regulated by electroneutral cation-chloride cotransporters such as

                                                  NKCC1 (Na-K-2Cl cotransporter) and KCC2 (K-Cl cotransporter). In mature CNS neurons, KCC2 drives Cl- to

                                                  concentrations below thermodynamical potential equilibrium strengthening the driving force for GABA-mediated

                                                  Cl- influx and membrane hyperpolarization. In PNS neurons, NKCC1 drives Cl- to concentrations well above

                                                  thermodynamical potential equilibrium leading to membrane depolarization and pre-synaptic inhibition.                 

                                               

                                                  Role of KCC2 in hyperexcitability and epilepsy.

                                                 

Figure 5 new_0.jpg            Hyperexcitability in CA1 hippocampus of KCC2+/- (heterozygote) mice

 

                                                   In rodents, KCC2 expression is low at birth and increases during postnatal development. This increase parallels

a decrease in intracellular Cl- and the switch from GABA depolarization to hyperpolarization. Reduction in KCC2 expression and activity lead to

hyperexcitability. The laboratory created a KCC2b knockout mouse reducing overall KCC2 expression by 90%. The animals die of seizures before

weaning. As shown in the attached Figure, mice with 50% KCC2 expression (heterozygote mice) demonstrate
increased excitability compared to

wild-type mice. The laboratory studies the properties, pharmacology, and regulation of the cotransporter.
 

                                                  Role of KCC3 in peripheral nerve physiology and pathology.

 

D periaxonal.jpg
 
 
 
 
 
      Abnormal periaxonal fluid accumulation in knockout KCC3 mice

 

                                        

 

 

                                                 Mutations in SLC12A6, the gene encoding KCC3, result in a peripheral neuropathy disorder called ACCPN (Agenesis of

                                                 Corpus Callosum with Peripheral Neuropathy). The laboratory uses heterologous expression systems to study the function

                                                 of the cotransporter KCC3 (dimerization, phosphorylation, etc.) and genetically-modified mouse models to study the

                                                 degeneration of peripheral nerves. We have found in our KCC3 knockout model that juvenile mice develop periaxonal

                                                 swelling in sciatic nerves prior to adult neurodegeneration. Current and future research projects are focusing on the

                                                regulation of KCC3 and its role in Cl- homeostasis and cell volume maintenance and regulation.

 

                                                3. Control of Na+ reabsorption in the distal nephron

                                                Most of the Na+ which is filtered by the kidney glomeruli is reabsorbed by the renal tubule. While the vast majority is

                                                reabsorbed in the proximal tubule, the regulated portion is reabsorbed in the distal nephron through the Na-K-2Cl               

                                                cotransporter NKCC2 in the Thick Ascending Limb of Henle (TAL), the Na-Cl cotransporter NCC in the distal

                                               convoluted tubule, and the epithelial Na+ channel ENac in the collecting duct. The laboratory studies the mechanisms

                                               (kinases) regulating Na+ reabsorption in the TAL and DCT.

                                                

                                                4. Basic mechanisms of ion transport

PNAS FIGURE 5.jpg   Enzyme kinetics, the steady-state approach 

                                                 

                                                  The laboratory studies the molecular properties of ion transporters. This includes structure - activity relationship,

                                                  transport kinetics, transport regulation, etc. The attached Figure was extracted from a study that identified novel

                                                  KCC2 inhibitors (PNAS 106: 5383-5388, 2009) . Using steady-state kinetics, we determined that the inhibitor D2

                                                  (now named ML077) binds competitively with K+ but non-competitively with Cl-. This is demonstrated in panel A

                                                  by a unique intercept of the lines on the Y axis   (Lineweaver-Burke plot) as D4 and K+ are varied whereas different

                                                  intercepts on the Y axis (panel B) as D4 and Cl- are varied. These data indicate that the inhibitor must bind the

                                                  transporter before K+. Once K+ is bound, the inhibitor cannot bind.