Physical Activity Intervention to Improve Surgical Spine Outcomes (PASS Trial)

Kristin R. Archer, PhD, DPT
Professor, Orthopaedic Surgery
Professor, Physical Medicine & Rehabilitation
Director, Center for Musculoskeletal Research
Vanderbilt University Medical Center

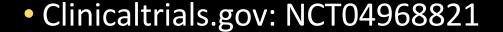
NASS 39th Annual Meeting, Chicago IL September 27, 2024

Disclosures

Funding: Academy of Orthopaedic Physical Therapy, Vanderbilt Center for Musculoskeletal Research, and a CTSA award (UL1TR000445) from the National Center for Advancing Translational Sciences.

Lumbar Spine Surgery Outcomes

- Wide variation in physical activity (PA) outcomes
 - Up to 80% remain physically inactive after surgery
 - Physical inactivity increases risk of persistent pain/disability
- Patients report needing help with PA due to fear of reinjury and increasing pain



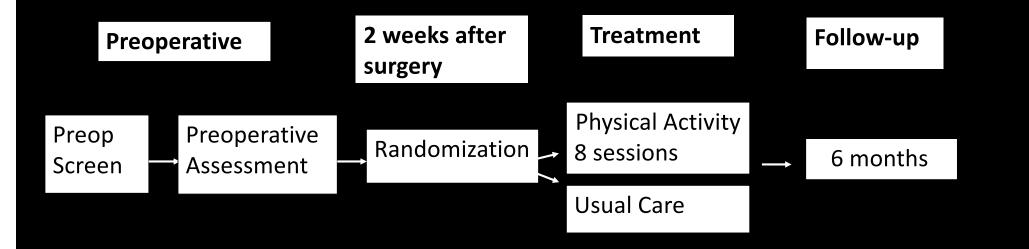
Wearable technology has improved PA in other orthopaedic populations

Objective

- We aimed to determine the efficacy of a telehealth physical activity intervention in patients following lumbar spine surgery.
 - Wearable technology (Fitbit Inspire HR)
 - Remote physical therapist support

Outcomes at 6 Months

- Primary Physical Activity Outcome (accelerometer):
 - Activity counts per day
- Secondary Physical Activity Outcome (accelerometer):
 - Time spent in moderate-to-vigorous physical activity (MVPA)
- Secondary PROs
 - Physical Function (PROMIS PF)
 - Disability (ODI)
 - Back Pain (NRS)
 - Leg Pain (NRS)
 - Return to Physical Activity



Study Participants

- Inclusion Criteria (adults)
 - Lumbar degenerative condition
 - spinal stenosis, spondylosis with or without myelopathy, degenerative spondylolisthesis
 - Surgical treatment
 - laminectomy with or without arthrodesis
 - Exclusions: revision surgery, microsurgical techniques, spinal deformity, trauma, tumor, infection

Randomized Controlled Trial Design

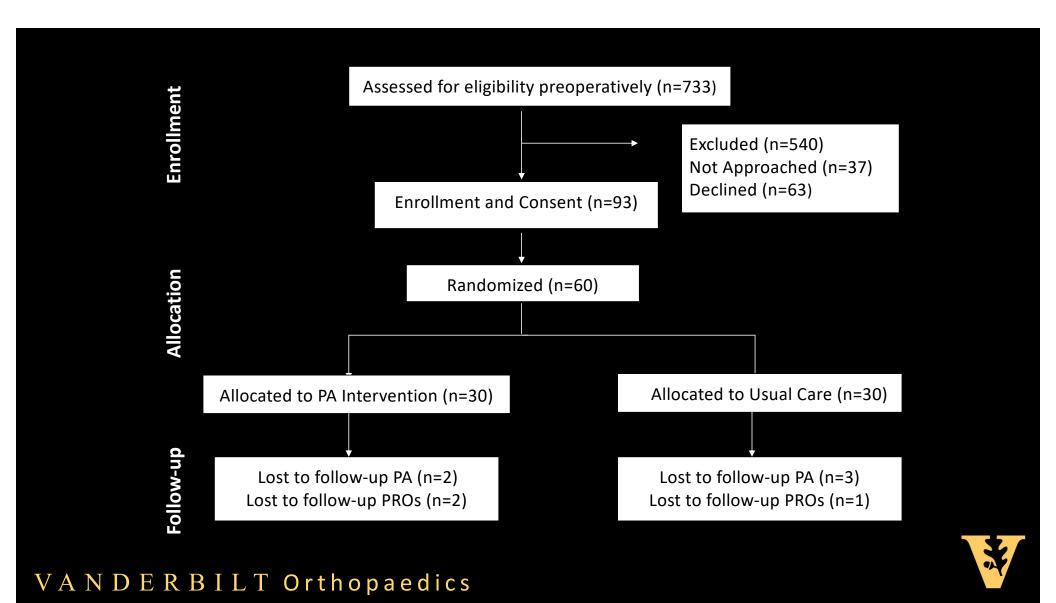
Physical Activity Treatment Protocol

- Remotely delivered (ZOOM)
- 8 sessions weekly
- Wearable device (Fitbit)
- PT Counseling
 - Motivational interviewing
 - Goal Setting
 - Fitabase review
 - Weekly walking goals
 - Goal tracking sheet

PTJ: Physical Therapy, & Rehabilitation Journal | Physical Therapy, 2024;104:1–10 https://doi.org/10.1093/pti/pzad096 Advance access publication date July 21, 2023

Original Researc

Combining Wearable Technology and Telehealth Counseling for Rehabilitation After Lumbar Spine Surgery: Feasibility and Acceptability of a Physical Activity Intervention


Hiral Master, PT, PhD, MPH^{1,2}, Rogelio A. Coronado, PT, PhD^{2,3}, Sarah Whitaker, BA², Shannon Block, MS², Susan W. Vanston, MS, PT², Jacquelyn S. Pennings, PhD^{2,4}, Rishabh Gupta, BS², Payton Robinette, MA², Byron Stephens, MD, MSCl^{2,5}, Amir Abtahi, MD^{2,5}, Jacob Schwarz, MD⁵, Kristin R. Archer, PhD, DPT^{2,3,*}

¹Vanderbilt Institute of Clinical & Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA ²Department of Orthopaedic Surgery, Center for Musculoskeletal Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA ³Department of Physical Medicine and Rehabilitation, Osher Center for Integrative Health, Vanderbilt University Medical Center, Nashville, Tennessee, USA

*Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA *Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA

*Address all correspondence to Dr Archer at: kristin.archer@vumc.org

Description of the Sample

Variable	PA Intervention (n=30)	Usual Care (n=30)	Total sample
Age (yrs)	59.7 (13.2)	62 (10.8)	60.9 (12.0)
Education, (%) Greater than HS	76.7	63.3	70
Male, (%)	53.3	26.7	40
Married, (%)	80	63.3	71.7
White, (%)	83.3	90	86.7
Employed, (%) Retired Not Working Working	33.3 13.4 53.3	40 3.3 56.7	36.7 8.3 55
Fusion, (%)	63.3	63.3	63.3
Spinal Stenosis, (%)	56.7	66.7	61.7

Proportional Odds Regression Results

Odds ratio for Intervention

Primary Outcome	Odds Ratio*	95% CI	P-value	R ²
Activity Counts per day	2.9	1.06 to 8.2	.039	0.58

^{*} Model controlled for outcome preoperatively and sex

Proportional Odds Regression Results

Odds ratio for Intervention

Primary Outcome	Odds Ratio*	95% CI	P-value	R^2
Activity Counts per day	2.9	1.06 to 8.2	.039	0.58

Secondary Outcome

Time spent in MVPA 4.2 1.5 to 11.9 .007 0.41

* Models controlled for outcome preoperatively and sex

Linear Regression Results

Beta coefficient for Intervention

Secondary Outcomes	β*	95% CI	P-value	R ²
PROMIS PF	3.9	0.32 to 7.4	.03	0.39
ODI	-4.2	-10.9 to 2.6	.21	0.48
Back Pain	-1.3	-2.4 to -0.13	.03	0.25
Leg Pain	-1.2	-2.4 to 1.2	.06	0.14

^{*} Models controlled for outcome preoperatively and sex

Logistic Regression Results

Odds Ratio for Intervention

Outcome	Odds Ratio*	95% CI	P-value	R ²
Return to Physical Activity	6.0	1.9 to 21.7	.004	0.17

^{*} Model controlled for sex

Intervention Assessment (N=27)

	Mean (SD)
Helpful to recovery (0-10), mean (SD)	9.0 (1.3)
Likely to recommend (0-10), mean (SD)	9.3 (1.1)
Activity increased a meaningful amount, N (%)	23 (85%)
Intervention more important than other services, N (%)	19 (70%)
Benefits outweighed the effort, N (%)	17 (63%)

Discussion

- Statistically significant differences across groups at 6 months
 - Physical activity, physical function, back pain
- High adherence and satisfaction with intervention
 - 77% completed all 8 sessions
 - 85% extremely likely to recommend/activity increased meaningful amount
 - 70% extremely helpful to overall recovery/more important than other services

VANDERBILT Orthopaedics

Clinical Implications

- Wearable technology and physical therapist counseling has potential to improve physical activity/exercise adherence
- Physical activity screening may be beneficial for a targeted rehabilitation approach
- Walking programs alone or in combination with traditional rehabilitation may be an effective way to improve outcomes

- Hiral Master, PT, PhD, MPH
- Rogelio Coronado, PT, PhD
- Jackie Pennings, PhD
- Susan W. Vanston, MS, PT
- Keith R. Cole, DPT, PhD
- Alicia M. Hymel
- Emily Oleisky

- Jacob P. Schwarz, MD
- Scott L. Zucherman, MD, MPH
- Amir M. Abtahi, MD
- Byron F. Stephens, MD, MSCI
- Amanda Priest
- Aran Sullivan

Thank You

Vanderbilt Center for Musculoskeletal Research https://www.vumc.org/musculoskeletal-research
Kristin.archer@vumc.org
@VUMC_MSK

VANDERBILT Orthopaedics

