-
Muñoz NM, Upton M, Rojas A, Washington MK, Lin L, Chytil A, Sozmen EG, Madison BB, Pozzi A, Moon RT, Moses HL, Grady WM. Transforming growth factor beta receptor type II inactivation induces the malignant transformation of intestinal neoplasms initiated by Apc mutation. Cancer research. 2006 Oct 15;66(66). 9837-44.
Abstract
The transforming growth factor-beta (TGF-beta) signaling pathway is a tumor-suppressor pathway that is commonly inactivated in colon cancer. TGF-beta is a secreted ligand that mediates its effects through a transmembrane heteromeric receptor complex, which consists of type I (TGFBR1) and type II subunits (TGFBR2). Approximately 30% of colon cancers carry TGFBR2 mutations, demonstrating that it is a common target for mutational inactivation in this cancer. To assess the functional role of TGFBR2 inactivation in the multistep progression sequence of colon cancer, we generated a mouse model that recapitulates two common genetic events observed in human colon cancer by mating Apc(1638N/wt) mice with mice that are null for Tgfbr2 in the intestinal epithelium, Villin-Cre;Tgfbr2(E2flx/E2flx) mice. In this model, we observed a dramatic increase in the number of intestinal adenocarcinomas in the Apc(1638N/wt);Villin-Cre;Tgfbr2(E2flx/E2flx) mice (called Apc(1638N/wt);Tgfbr2(IEKO)) compared with those mice with intact Tgfbr2 (Apc(1638N/wt);Tgfbr2(E2flx/E2flx)). Additionally, in vitro analyses of epithelial tumor cells derived from the Apc(1638N/wt);Tgfbr2(IEKO) mice showed enhanced expression and activity of matrix metalloproteinase MMP-2 and MMP-9, as well as increased TGF-beta1 secretion in the conditioned medium. Similarly, primary tumor tissues from the Apc(1638N/wt);Tgfbr2(IEKO) mice also showed elevated amounts of TGF-beta1 as well as higher MMP-2 activity in comparison with Apc(1638N/wt);Tgfbr2(E2flx/E2flx)-derived tumors. Thus, loss of TGFBR2 in intestinal epithelial cells promotes the invasion and malignant transformation of tumors initiated by Apc mutation, providing evidence that Wnt signaling deregulation and TGF-beta signaling inactivation cooperate to drive the initiation and progression, respectively, of intestinal cancers in vivo.