Inactivation of in Abcg2 lineage-derived cells drives the appearance of polycystic lesions and fibrosis in the adult kidney.

Abstract

Tuberous sclerosis complex 2 (TSC2), or tuberin, is a pivotal regulator of the mechanistic target of rapamycin signaling pathway that controls cell survival, proliferation, growth, and migration. Loss of function manifests in organ-specific consequences, the mechanisms of which remain incompletely understood. Recent single cell analysis of the kidney has identified ATP-binding cassette G2 (Abcg2) expression in renal proximal tubules of adult mice as well as a in a novel cell population. The impact in adult kidney of knockdown in the Abcg2-expressing lineage has not been evaluated. We engineered an inducible system in which expression of truncated , lacking exons 36-37 with an intact 3' region and polycystin 1, is driven by Here, we demonstrate that selective expression of in the Abcg2 lineage drives recombination in proximal tubule epithelial and rare perivascular mesenchymal cells, which results in progressive proximal tubule injury, impaired kidney function, formation of cystic lesions, and fibrosis in adult mice. These data illustrate the critical importance of function in the Abcg2-expressing proximal tubule epithelium and mesenchyme during the development of cystic lesions and remodeling of kidney parenchyma.