-
Li R, Duan R, Zhang X, Lumley T, Pendergrass S, Bauer C, Hakonarson H, Carrell DS, Smoller JW, Wei WQ, Carroll R, Velez Edwards DR, Wiesner G, Sleiman P, Denny JC, Mosley JD, Ritchie MD, Chen Y, Moore JH. Lossless integration of multiple electronic health records for identifying pleiotropy using summary statistics. Nature communications. 2021 Dec 8;12(12). 168 p.
Abstract
Increasingly, clinical phenotypes with matched genetic data from bio-bank linked electronic health records (EHRs) have been used for pleiotropy analyses. Thus far, pleiotropy analysis using individual-level EHR data has been limited to data from one site. However, it is desirable to integrate EHR data from multiple sites to improve the detection power and generalizability of the results. Due to privacy concerns, individual-level patients' data are not easily shared across institutions. As a result, we introduce Sum-Share, a method designed to efficiently integrate EHR and genetic data from multiple sites to perform pleiotropy analysis. Sum-Share requires only summary-level data and one round of communication from each site, yet it produces identical test statistics compared with that of pooled individual-level data. Consequently, Sum-Share can achieve lossless integration of multiple datasets. Using real EHR data from eMERGE, Sum-Share is able to identify 1734 potential pleiotropic SNPs for five cardiovascular diseases.