-
Spiga L, Winter MG, Furtado de Carvalho T, Zhu W, Hughes ER, Gillis CC, Behrendt CL, Kim J, Chessa D, Andrews-Polymenis HL, Beiting DP, Santos RL, Hooper LV, Winter SE. An Oxidative Central Metabolism Enables Salmonella to Utilize Microbiota-Derived Succinate. Cell host & microbe. 2017 Sep 13;22(22). 291-301.e6. NIHMSID: NIHMS898101.
Abstract
The mucosal inflammatory response induced by Salmonella serovar Typhimurium creates a favorable niche for this gut pathogen. Conventional wisdom holds that S. Typhimurium undergoes an incomplete tricarboxylic acid (TCA) cycle in the anaerobic mammalian gut. One change during S. Typhimurium-induced inflammation is the production of oxidized compounds by infiltrating neutrophils. We show that inflammation-derived electron acceptors induce a complete, oxidative TCA cycle in S. Typhimurium, allowing the bacteria to compete with the microbiota for colonization. A complete TCA cycle facilitates utilization of the microbiota-derived fermentation product succinate as a carbon source. S. Typhimurium succinate utilization genes contribute to efficient colonization in conventionally raised mice, but provide no growth advantage in germ-free mice. Mono-association of gnotobiotic mice with Bacteroides, a major succinate producer, restores succinate utilization in S. Typhimurium. Thus, oxidative central metabolism enables S. Typhimurium to utilize a variety of carbon sources, including microbiota-derived succinate.