A phenylalanine clamp catalyzes protein translocation through the anthrax toxin pore.

Abstract

The protective antigen component of anthrax toxin forms a homoheptameric pore in the endosomal membrane, creating a narrow passageway for the enzymatic components of the toxin to enter the cytosol. We found that, during conversion of the heptameric precursor to the pore, the seven phenylalanine-427 residues converged within the lumen, generating a radially symmetric heptad of solvent-exposed aromatic rings. This "phi-clamp" structure was required for protein translocation and comprised the major conductance-blocking site for hydrophobic drugs and model cations. We conclude that the phi clamp serves a chaperone-like function, interacting with hydrophobic sequences presented by the protein substrate as it unfolds during translocation.