-
Gustavson DE, Coleman PL, Wang Y, Nitin R, Petty LE, Bush CT, Mosing MA, Wesseldijk LW, Ullén F, Below JE, Cox NJ, Gordon RL. Exploring the genetics of rhythmic perception and musical engagement in the Vanderbilt Online Musicality Study. Annals of the New York Academy of Sciences. 2023 Mar;1521(1521). 140-154. NIHMSID: NIHMS1865623.
Abstract
Uncovering the genetic underpinnings of musical ability and engagement is a foundational step for exploring their wide-ranging associations with cognition, health, and neurodevelopment. Prior studies have focused on using twin and family designs, demonstrating moderate heritability of musical phenotypes. The current study used genome-wide complex trait analysis and polygenic score (PGS) approaches utilizing genotype data to examine genetic influences on two musicality traits (rhythmic perception and music engagement) in N = 1792 unrelated adults in the Vanderbilt Online Musicality Study. Meta-analyzed heritability estimates (including a replication sample of Swedish individuals) were 31% for rhythmic perception and 12% for self-reported music engagement. A PGS derived from a recent study on beat synchronization ability predicted both rhythmic perception (β = 0.11) and music engagement (β = 0.19) in our sample, suggesting that genetic influences underlying self-reported beat synchronization ability also influence individuals' rhythmic discrimination aptitude and the degree to which they engage in music. Cross-trait analyses revealed a modest contribution of PGSs from several nonmusical traits (from the cognitive, personality, and circadian chronotype domains) to individual differences in musicality (β = -0.06 to 0.07). This work sheds light on the complex relationship between the genetic architecture of musical rhythm processing, beat synchronization, music engagement, and other nonmusical traits.