-
Abraham A, Le B, Kosti I, Straub P, Velez-Edwards DR, Davis LK, Newton JM, Muglia LJ, Rokas A, Bejan CA, Sirota M, Capra JA. Dense phenotyping from electronic health records enables machine learning-based prediction of preterm birth. BMC medicine. 2022 Sep;20(20). 333 p.
Abstract
Identifying pregnancies at risk for preterm birth, one of the leading causes of worldwide infant mortality, has the potential to improve prenatal care. However, we lack broadly applicable methods to accurately predict preterm birth risk. The dense longitudinal information present in electronic health records (EHRs) is enabling scalable and cost-efficient risk modeling of many diseases, but EHR resources have been largely untapped in the study of pregnancy.